

Mathematics: analysis and approaches SL formula booklet

For use during the course and in the examinations
First examinations 2021

Version 1.0

STANDARD LEVEL

Contents

Topic 1: Number and algebra – SL	2
Topic 2: Functions – SL	3
Topic 3: Geometry and trigonometry – SL	4
Topic 4: Statistics and probability – SL	6
Topic 5: Calculus – SL	7

Topic 1: Number and algebra – SL

1.2	The <i>n</i> th term of an arithmetic sequence	$u_n = u_1 + (n-1)d$
	The sum of <i>n</i> terms of an arithmetic sequence	$S_n = \frac{n}{2} (2u_1 + (n-1)d); S_n = \frac{n}{2} (u_1 + u_n)$
1.3	The <i>n</i> th term of a geometric sequence	$u_n = u_1 r^{n-1}$
	The sum of <i>n</i> terms of a finite geometric sequence	$S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}, \ r \neq 1$
1.8	The sum of an infinite geometric sequence	$S_{\infty} = \frac{u_1}{1-r}, \mid r \mid < 1$
1.4	Compound interest	$FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}, \text{ where } FV \text{ is the future value,}$ $PV \text{ is the present value, } n \text{ is the number of years,}$ $k \text{ is the number of compounding periods per year,}$ $r\% \text{ is the nominal annual rate of interest}$
1.5	Exponents and logarithms	$a^x = b \iff x = \log_a b$, where $a > 0, b > 0, a \ne 1$
1.7	Exponents and logarithms	$\log_a xy = \log_a x + \log_a y$ $\log_a \frac{x}{y} = \log_a x - \log_a y$ $\log_a x^m = m \log_a x$ $\log_a x = \frac{\log_b x}{\log_b a}$
	Exponential and logarithmic functions	$a^{x} = e^{x \ln a}$; $\log_{a} a^{x} = x = a^{\log_{a} x}$ where $a, x > 0, a \ne 1$
1.9	Binomial theorem $n \in \mathbb{N}$	$(a+b)^n = a^n + {}^nC_1 a^{n-1}b + \dots + {}^nC_r a^{n-r}b^r + \dots + b^n$
		${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

Topic 2: Functions – SL

2.1	Equations of a straight line	$y = mx + c$; $ax + by + d = 0$; $y - y_1 = m(x - x_1)$
	Gradient formula	$m = \frac{y_2 - y_1}{x_2 - x_1}$
2.6	Axis of symmetry of the graph of a quadratic function	$f(x) = ax^2 + bx + c \implies$ axis of symmetry is $x = -\frac{b}{2a}$
2.7	Solutions of a quadratic equation	$ax^{2} + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}, a \neq 0$
	Discriminant	$\Delta = b^2 - 4ac$

Prior learning - SL

Area of a parallelogram

A = bh, where b is the base, h is the height

Area of a triangle

 $A = \frac{1}{2}(bh)$, where b is the base, h is the height

Area of a trapezoid

 $A = \frac{1}{2}(a+b)h$, where a and b are the parallel sides, h is the height

Area of a circle

 $A = \pi r^2$. where r is the radius

Circumference of a circle

 $C = 2\pi r$, where r is the radius

Volume of a cuboid

V = lwh, where l is the length, w is the width, h is the height

Volume of a cylinder

 $V = \pi r^2 h$, where r is the radius, h is the height

Volume of a prism

V = Ah, where A is the area of cross-section, h is the height

Area of the curved surface of

a cylinder

 $A = 2\pi rh$, where r is the radius, h is the height

Distance between two

points (x_1, y_1) and (x_2, y_2)

 $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Coordinates of the midpoint of a line segment with endpoints

 (x_1, y_1) and (x_2, y_2)

 $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

3.1 Distance between two points (x_1, y_1, z_1) and

and (x_2, y_2, z_2)

 (x_2, y_2, z_2)

 $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$

Coordinates of the midpoint of a line segment with endpoints (x_1, y_1, z_1)

 $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$

	Volume of a right-pyramid	$V = \frac{1}{3}Ah$, where A is the area of the base, h is the height
	Volume of a right cone	$V=rac{1}{3}\pi r^2 h$, where r is the radius, h is the height
	Area of the curved surface of a cone	$A=\pi r l$, where r is the radius, l is the slant height
	Volume of a sphere	$V = \frac{4}{3}\pi r^3$, where r is the radius
	Surface area of a sphere	$A=4\pi r^2$, where r is the radius
3.2	Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
	Cosine rule	$c^{2} = a^{2} + b^{2} - 2ab\cos C$; $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$
	Area of a triangle	$A = \frac{1}{2}ab\sin C$
3.4	Length of an arc	$l=r\theta$, where r is the radius, θ is the angle measured in radians
	Area of a sector	$A\!=\!\frac{1}{2}r^2\theta$, where r is the radius, θ is the angle measured in radians
3.5	Identity for $\tan \theta$	$\tan \theta = \frac{\sin \theta}{\cos \theta}$
3.6	Pythagorean identity	$\cos^2\theta + \sin^2\theta = 1$
	Double angle identities	$\sin 2\theta = 2\sin\theta\cos\theta$
		$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$
3.5	Length of an arc Area of a sector Identity for $\tan \theta$ Pythagorean identity	$l=r\theta \text{ , where } r \text{ is the radius, } \theta \text{ is the angle measured in radians}$ $A=\frac{1}{2}r^2\theta \text{ , where } r \text{ is the radius, } \theta \text{ is the angle measured in radians}$ $\tan\theta=\frac{\sin\theta}{\cos\theta}$ $\cos^2\theta+\sin^2\theta=1$ $\sin2\theta=2\sin\theta\cos\theta$

Topic 4: Statistics and probability – SL

4.2	Interquartile range	$IQR = Q_3 - Q_1$
4.3	Mean, \overline{x} , of a set of data	$\overline{x} = \frac{\displaystyle\sum_{i=1}^k f_i x_i}{n}$, where $n = \displaystyle\sum_{i=1}^k f_i$
4.5	Probability of an event A	$P(A) = \frac{n(A)}{n(U)}$
	Complementary events	P(A) + P(A') = 1
4.6	Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$
	Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$
	Independent events	$P(A \cap B) = P(A) P(B)$
4.7	Expected value of a discrete random variable \boldsymbol{X}	$E(X) = \sum_{i=1}^{k} x_i P(X = x_i)$
4.8	Binomial distribution $X \sim B(n, p)$	
	Mean	E(X) = np
	Variance	Var(X) = np(1-p)
4.12	Standardized normal variable	$z = \frac{x - \mu}{\sigma}$

Topic 5: Calculus – SL

5.3	Derivative of x^n	$f(x) = x^n \implies f'(x) = nx^{n-1}$
5.6	Derivative of sin x	$f(x) = \sin x \implies f'(x) = \cos x$
	Derivative of $\cos x$	$f(x) = \cos x \implies f'(x) = -\sin x$
	Derivative of e ^x	$f(x) = e^x \implies f'(x) = e^x$
	Derivative of $\ln x$	$f(x) = \ln x \implies f'(x) = \frac{1}{x}$
	Chain rule	$y = g(u)$, where $u = f(x) \Rightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
	Product rule	$y = uv \implies \frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$
	Quotient rule	$y = \frac{u}{v} \implies \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
5.9	Acceleration	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 s}{\mathrm{d}t^2}$
	Distance travelled from t_1 to t_2	$distance = \int_{t_1}^{t_2} v(t) dt$
	Displacement from t_1 to t_2	$displacement = \int_{t_1}^{t_2} v(t) \mathrm{d}t$
5.5	Integral of x"	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$
	Area between a curve $y = f(x)$ and the x -axis, where $f(x) > 0$	$A = \int_{a}^{b} y \mathrm{d}x$

5.10	Standard integrals	$\int \frac{1}{x} \mathrm{d}x = \ln\left x\right + C$
		$\int \sin x \mathrm{d}x = -\cos x + C$
		$\int \cos x \mathrm{d}x = \sin x + C$
		$\int e^x dx = e^x + C$
5.11	Area of region enclosed by a curve and <i>x</i> -axis	$A = \int_{a}^{b} y \mathrm{d}x$