Mathematics: analysis and approaches SL formula booklet

STANDARD LEVEL

Topic 1: Number and algebra - SL 2
Topic 2: Functions - SL 3
Topic 3: Geometry and trigonometry - SL 4
Topic 4: Statistics and probability - SL 6
Topic 5: Calculus - SL 7

Topic 1: Number and algebra - SL

1.2	The nth term of an arithmetic sequence The sum of n terms of an arithmetic sequence	$u_{n}=u_{1}+(n-1) d$ $S_{n}=\frac{n}{2}\left(2 u_{1}+(n-1) d\right) ; S_{n}=\frac{n}{2}\left(u_{1}+u_{n}\right)$
1.3	The nth term of a geometric sequence The sum of n terms of a finite geometric sequence	$u_{n}=u_{1} r^{n-1}$ $S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
1.8	The sum of an infinite geometric sequence	$S_{\infty}=\frac{u_{1}}{1-r},\|r\|<1$
1.4	Compound interest	$F V=P V \times\left(1+\frac{r}{100 k}\right)^{k n}$, where $F V$ is the future value, $P V$ is the present value, n is the number of years, k is the number of compounding periods per year, $r \%$ is the nominal annual rate of interest
1.5	Exponents and logarithms	$a^{x}=b \Leftrightarrow x=\log _{a} b$, where $a>0, b>0, a \neq 1$
1.7	Exponents and logarithms Exponential and logarithmic functions	$\begin{aligned} & \log _{a} x y=\log _{a} x+\log _{a} y \\ & \log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y \\ & \log _{a} x^{m}=m \log _{a} x \\ & \log _{a} x=\frac{\log _{b} x}{\log _{b} a} \\ & a^{x}=\mathrm{e}^{x \ln a} ; \log _{a} a x=x=a^{\log _{a} x} \text { where } a, x>0, a \neq 1 \end{aligned}$
1.9	Binomial theorem $n \in \mathbb{N}$	$(a+b)^{n}=a^{n}+{ }^{n} \mathrm{C}_{1} a^{n-1} b+\ldots+{ }^{n} \mathrm{C}_{r} a^{n-r} b^{r}+\ldots+b^{n}$ ${ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}$

Topic 2: Functions - SL

2.1	Equations of a straight line Gradient formula	$y=m x+c ; a x+b y+d=0 ; y-y_{1}=m\left(x-x_{1}\right)$ $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
2.6	Axis of symmetry of the graph of a quadratic function	$f(x)=a x^{2}+b x+c \Rightarrow$ axis of symmetry is $x=-\frac{b}{2 a}$
2.7	Solutions of a quadratic equation Discriminant	$\begin{aligned} & a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, a \neq 0 \\ & \Delta=b^{2}-4 a c \end{aligned}$

Topic 3: Geometry and trigonometry - SL

Prior learning - SL	
Area of a parallelogram	$A=b h$, where b is the base, h is the height
Area of a triangle	$A=\frac{1}{2}(b h)$, where b is the base, h is the height
Area of a trapezoid	$A=\frac{1}{2}(a+b) h$, where a and b are the parallel sides, h is the height
Area of a circle	$A=\pi r^{2}$, where r is the radius
Circumference of a circle	$C=2 \pi r$, where r is the radius
Volume of a cuboid	$V=l w h$, where l is the length, w is the width, h is the height
Volume of a cylinder	$V=\pi r^{2} h$, where r is the radius, h is the height
Volume of a prism	$V=A h$, where A is the area of cross-section, h is the height
Area of the curved surface of a cylinder	$A=2 \pi r h$, where r is the radius, h is the height
Distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
Coordinates of the midpoint of a line segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

3.1 $\begin{aligned} & \text { Distance between two } \\ & \text { points }\left(x_{1}, y_{1}, z_{1}\right) \text { and }\end{aligned} \quad d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$ $\left(x_{2}, y_{2}, z_{2}\right)$

Coordinates of the midpoint of a line segment $\quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$ with endpoints $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$

	Volume of a right-pyramid Volume of a right cone Area of the curved surface of a cone Volume of a sphere Surface area of a sphere	$V=\frac{1}{3} A h$, where A is the area of the base, h is the height $V=\frac{1}{3} \pi r^{2} h$, where r is the radius, h is the height $A=\pi r l$, where r is the radius, l is the slant height $V=\frac{4}{3} \pi r^{3}$, where r is the radius $A=4 \pi r^{2}$, where r is the radius
3.2	Sine rule Cosine rule Area of a triangle	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ $\begin{aligned} & c^{2}=a^{2}+b^{2}-2 a b \cos C ; \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\ & A=\frac{1}{2} a b \sin C \end{aligned}$
3.4	Length of an arc Area of a sector	$l=r \theta$, where r is the radius, θ is the angle measured in radians $A=\frac{1}{2} r^{2} \theta$, where r is the radius, θ is the angle measured in radians
3.5	Identity for $\tan \theta$	$\tan \theta=\frac{\sin \theta}{\cos \theta}$
3.6	Pythagorean identity Double angle identities	$\cos ^{2} \theta+\sin ^{2} \theta=1$ $\sin 2 \theta=2 \sin \theta \cos \theta$ $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta$

Topic 4: Statistics and probability - SL

4.2	Interquartile range	$\mathrm{IQR}=Q_{3}-Q_{1}$
4.3	Mean, \bar{x}, of a set of data	$\bar{x}=\frac{\sum_{i=1}^{k} f_{i} x_{i}}{n}$, where $n=\sum_{i=1}^{k} f_{i}$
4.5	Probability of an event A	$\mathrm{P}(A)=\frac{n(A)}{n(U)}$
Complementary events	$\mathrm{P}(A)+\mathrm{P}\left(A^{\prime}\right)=1$	
4.6	Combined events	$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
Mutually exclusive events	$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$	
Conditional probability	$\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$	
Independent events	$\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$	
Expected value of a		
discrete random variable X	$\mathrm{E}(X)=\sum_{i=1}^{k} x_{i} \mathrm{P}\left(X=x_{i}\right)$	
4.8	Binomial distribution $X \sim \mathrm{~B}(n, p)$ Mean	$\mathrm{E}(X)=n p$
Variance	Standardized normal variable	$z=\frac{x-\mu}{\sigma}$
-12		

Topic 5: Calculus - SL

5.3	Derivative of x^{n}	$f(x)=x^{n} \Rightarrow f^{\prime}(x)=n x^{n-1}$
5.6	Derivative of $\sin x$ Derivative of $\cos x$ Derivative of e^{x} Derivative of $\ln x$ Chain rule Product rule Quotient rule	$\begin{aligned} & f(x)=\sin x \Rightarrow f^{\prime}(x)=\cos x \\ & f(x)=\cos x \Rightarrow f^{\prime}(x)=-\sin x \\ & f(x)=\mathrm{e}^{x} \Rightarrow f^{\prime}(x)=\mathrm{e}^{x} \\ & f(x)=\ln x \Rightarrow f^{\prime}(x)=\frac{1}{x} \\ & y=g(u), \text { where } u=f(x) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x} \\ & y=u v \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x} \\ & y=\frac{u}{v} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \end{aligned}$
5.9	Acceleration Distance travelled from t_{1} to t_{2} Displacement from t_{1} to t_{2}	$\begin{aligned} & a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}} \\ & \text { distance }=\int_{t_{1}}^{t_{2}}\|v(t)\| \mathrm{d} t \\ & \text { displacement }=\int_{t_{1}}^{t_{2}} v(t) \mathrm{d} t \end{aligned}$
5.5	Integral of x^{n} Area between a curve $y=f(x)$ and the x-axis, where $f(x)>0$	$\int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+C, n \neq-1$ $A=\int_{a}^{b} y \mathrm{~d} x$

5.10		$\int \frac{1}{x} \mathrm{~d} x=\ln \|x\|+C$
	$\int \sin x \mathrm{~d} x=-\cos x+C$	
	$\int \cos x \mathrm{~d} x=\sin x+C$	
$\mathbf{5 . 1 1}$	Area of region enclosed by a curve and x-axis	$A=\int_{a}^{b}\|y\| \mathrm{d} x$

