Mathematics: applications and interpretation SL formula booklet

For use during the course and in the examinations
First examinations 2021
Version 1.0

STANDARD LEVEL

Topic 1: Number and algebra - SL 2
Topic 2: Functions - SL 2
Topic 3: Geometry and trigonometry - SL 3
Topic 4: Statistics and probability - SL 5
Topic 5: Calculus - SL 6

Topic 1: Number and algebra - SL

1.2	The nth term of an arithmetic sequence The sum of n terms of an arithmetic sequence	$u_{n}=u_{1}+(n-1) d$ $S_{n}=\frac{n}{2}\left(2 u_{1}+(n-1) d\right) ; S_{n}=\frac{n}{2}\left(u_{1}+u_{n}\right)$
1.3	The nth term of a geometric sequence The sum of n terms of a finite geometric sequence	$u_{n}=u_{1} r^{n-1}$ $S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
1.4	Compound interest	$F V=P V \times\left(1+\frac{r}{100 k}\right)^{k n}$, where $F V$ is the future value, $P V$ is the present value, n is the number of years, k is the number of compounding periods per year, $r \%$ is the nominal annual rate of interest
1.5	Exponents and logarithms	$a^{x}=b \Leftrightarrow x=\log _{a} b$, where $a>0, b>0, a \neq 1$
1.6	Percentage error	$\varepsilon=\left\|\frac{v_{\mathrm{A}}-v_{\mathrm{E}}}{v_{\mathrm{E}}}\right\| \times 100 \%$, where v_{E} is the exact value and v_{A} is the approximate value of v

Topic 2: Functions - SL

$\mathbf{2 . 1}$	Equations of a straight line	$y=m x+c ; a x+b y+d=0 ; y-y_{1}=m\left(x-x_{1}\right)$		
Gradient formula	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$		\quad	Axis of symmetry of the
:---				
graph of a quadratic				
function	$\quad f(x)=a x^{2}+b x+c \Rightarrow$ axis of symmetry is $x=-\frac{b}{2 a}$.			

Topic 3: Geometry and trigonometry - SL

Prior learning - SL	
Area of a parallelogram	$A=b h$, where b is the base, h is the height
Area of a triangle	$A=\frac{1}{2}(b h)$, where b is the base, h is the height
Area of a trapezoid	$A=\frac{1}{2}(a+b) h$, where a and b are the parallel sides, h is the height
Area of a circle	$A=\pi r^{2}$, where r is the radius
Circumference of a circle	$C=2 \pi r$, where r is the radius
Volume of a cuboid	$V=l w h$, where l is the length, w is the width, h is the height
Volume of a cylinder	$V=\pi r^{2} h$, where r is the radius, h is the height
Volume of prism	$V=A h$, where A is the area of cross-section, h is the height
Area of the curved surface of a cylinder	$A=2 \pi r h$, where r is the radius, h is the height
Distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
Coordinates of the midpoint of a line segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

| 3.1 | Distance between two
 points $\left(x_{1}, y_{1}, z_{1}\right)$ and
 $\left(x_{2}, y_{2}, z_{2}\right)$ |
| :--- | :--- | :--- |
| Coordinates of the
 midpoint of a line segment
 with endpoints $\left(x_{1}, y_{1}, z_{1}\right)$
 and $\left(x_{2}, y_{2}, z_{2}\right)$ | $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$ |$\quad d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$

	Volume of a right-pyramid Volume of a right cone Area of the curved surface of a cone Volume of a sphere Surface area of a sphere	$V=\frac{1}{3} A h$, where A is the area of the base, h is the height $V=\frac{1}{3} \pi r^{2} h$, where r is the radius, h is the height $A=\pi r l$, where r is the radius, l is the slant height $V=\frac{4}{3} \pi r^{3}$, where r is the radius $A=4 \pi r^{2}$, where r is the radius
3.2	Sine rule Cosine rule Area of a triangle	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ $c^{2}=a^{2}+b^{2}-2 a b \cos C ; \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$ $A=\frac{1}{2} a b \sin C$
3.4	Length of an arc Area of a sector	$l=\frac{\theta}{360} \times 2 \pi r$, where θ is the angle measured in degrees, r is the radius $A=\frac{\theta}{360} \times \pi r^{2}$, where θ is the angle measured in degrees, r is the radius

Topic 4: Statistics and probability - SL

4.2	Interquartile range	$\mathrm{IQR}=Q_{3}-Q_{1}$
4.3	Mean, \bar{x}, of a set of data	$\bar{x}=\frac{\sum_{i=1}^{k} f_{i} x_{i}}{n} \text {, where } n=\sum_{i=1}^{k} f_{i}$
4.5	Probability of an event A Complementary events	$\begin{aligned} & \mathrm{P}(A)=\frac{n(A)}{n(U)} \\ & \mathrm{P}(A)+\mathrm{P}\left(A^{\prime}\right)=1 \end{aligned}$
4.6	Combined events Mutually exclusive events Conditional probability Independent events	$\begin{aligned} & \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \\ & \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B) \\ & \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} \\ & \mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B) \end{aligned}$
4.7	Expected value of a discrete random variable X	$\mathrm{E}(X)=\sum_{i=1}^{k} x_{i} \mathrm{P}\left(X=x_{i}\right)$
4.8	Binomial distribution $X \sim \mathrm{~B}(n, p)$ Mean Variance	$\begin{aligned} & \mathrm{E}(X)=n p \\ & \operatorname{Var}(X)=n p(1-p) \end{aligned}$

Topic 5: Calculus - SL

5.3	Derivative of x^{n}	$f(x)=x^{n} \Rightarrow f^{\prime}(x)=n x^{n-1}$
5.5	Integral of x^{n} Area of region enclosed by a curve $y=f(x)$ and the x-axis, where $f(x)>0$	$\int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+C, \quad n \neq-1$ $A=\int_{a}^{b} y \mathrm{~d} x$
5.8	The trapezoidal rule	$\begin{aligned} & \int_{a}^{b} y \mathrm{~d} x \approx \frac{1}{2} h\left(\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right), \\ & \text { where } h=\frac{b-a}{n} \end{aligned}$

